Thursday, July 2, 2015

Permanent Magnet Materials

     Permanent Magnet Materials

The first attempts to produce nanoscale microstructures to enhance the magnetic properties of the Nb-Fe-B permanent magnetic materials used mechanical alloying of blended elemental powders followed by heat treatment (Schultz et al. 1987). Since the grain structure so obtained does not exhibit any crystallographic texture-and limits the energy product-special processing methods such as die-upsetting were used by Schultz and coworkers (1989) to provide the crystallographic anisotropy. While the coercivities of these nanocrystalline alloys are high, the remanent magnetization is decreased.

Recent approaches to increasing the magnetic induction have utilized exchange coupling in magnetically hard and soft phases. The Fe-rich compositions (e.g., Fe90Nd7B3) result in a mixture of the hard Fe14Nd2B phase and soft a Fe phase. The nanoscale two-phase mixtures of a hard magnetic phase and a soft magnetic phase can exhibit values of remanent magnetization, Mr, significantly greater than the isotropic value of 0.5 Ms. This "remanence enhancement" is associated with exchange coupling between the hard and soft phases, which forces the magnetization vector of the soft phase to be rotated to that of the hard phase (Smith et al. 1996). Two important requirements for alloys to exhibit remanence enhancement are a nanocrystalline grain size and a degree of coherence across interphase boundaries sufficient to enable adjacent phases to be exchange-coupled. The significant feature of the exchange coupling is that it allows crystallographically isotropic materials to exhibit remanence values approaching those achieved after full alignment. Such two-phase nanoscale ferromagnetic alloys have been prepared by nonequilibrium methods such as melt-spinning, mechanical alloying, and sputter deposition. Besides the high reduced remanence, the material cost is reduced by reduction in the content of the expensive hard rare earth-containing magnetic phase.

The theoretical understanding of remanence enhancement appears to be developed to a degree enabling prediction of magnet performance; however, this performance, while a significant improvement over single-phase isotropic magnets, does not reach predicted values. Work is required on optimizing the orientation relationships between the hard and soft phases and the interphase properties (coherency) between them.

Research on nanocrystalline hard magnetic alloys has received attention worldwide. The U.S. efforts are summarized in the article by G.C. Hadjipanayis (1998, 107-112). While less research seems to be carried out in the world on these materials compared to the nanocrystalline soft magnetic alloys, some efforts exist in most countries. Notable programs are those of L. Schultz and coworkers at the Institut für Festköper und Werkstofforschung (IFW) in Dresden (see site report in Appendix B) and P.G. McCormick and coworkers at the University of Western Australia.

While the very low losses of the nc soft magnetic materials (Finemet or Nanoperm) are dependent on grain size for their properties, the hard magnetic nc alloys with remanence enhancement provide flexibility in processing, especially with powder materials. These remanence-enhanced nc hard magnetic alloys may find many applications as permanent magnet components.

No comments:

Post a Comment