Thursday, July 2, 2015

Giant Magnetoresistance (GMR)

          Giant Magnetoresistance (GMR)

The phenomenon of giant magnetoresistance (GMR)-the decrease of electrical resistance of materials when exposed to a magnetic field-was first reported in a number of multilayer ferromagnetic/nonferromagnetic thin film systems (Baibich et al. 1988). More recently, GMR was observed in equiaxed granular nanocrystalline materials (Berkowitz et al. 1992). In particular, GMR systems with low saturation fields offer a wide area for application in magnetoresistive devices. GMR sensors have a higher output than conventional anisotropic magnetoresistive sensors or Hall effect sensors. They can operate at higher magnetic fields than conventional magnetoresistive sensors. In multilayer systems the antiferromagnetic alignment of the ferromagnetic layers in zero field becomes ferromagnetic as the field is applied and causes a decrease in resistance. Granular materials that show GMR consist of small ferromagnetic single-domain particles with randomly oriented magnetic axes in a nonmagnetic matrix. An external field rotates the magnetic axes of all magnetic particles. The rotation towards complete alignment of all magnetic axes again reduces the resistance in a similar way as for multilayers. The GMR in granular systems is isotropic. The explanation for the GMR is spin-dependent scattering of the conduction electrons at the ferromagnetic/nonmagnetic interfaces and, to a lesser extent, within the magnetic grains. The GMR scales inversely with the average particle diameter.

There is worldwide research on the GMR effect. U.S. programs are reviewed by R. Shull and G.C. Hadjipanayis in the proceedings of the WTEC U.S. nanotechnologies workshop (Shull 1998, 43-58; Hadjipanayis 1998, 107-112). The NIST work described by Shull has provided material with the largest GMR values for the smallest switching fields. Japanese research on GMR includes studies in Prof. Fujimori's group at Tohoku University (see site report in Appendix D).

While the theory for GMR of spin-dependent scattering referred to above has been used as an explanation, other explanations taking into account interaction between magnetic regions have been proposed (El-Hilo et al. 1994). Combined theoretical and experimental studies should help to clarify the mechanism for this effect.

No comments:

Post a Comment